SECOND SEMESTER - APRIL 2013

MT 2501/MT 2500 - ALGEBRA, ANAL.GEO \& CALCULUS - II

Date: 30/04/2013
Dept. No.

Max. : 100 Marks
Time: 9:00-12:00

PART - A

Answer ALL the questions
(10 X 2 = 20 Marks)

1. Evaluate $\int \frac{1}{x^{2}-36} d x$
2. Evaluate $\int x e^{x} d x$
3. Solve $(x d y+2 y d x)=x y d y$
4. Define Particular Integral.
5. Show that $1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots$ is convergent.
6. Find the nature of the sequence $\frac{n}{n^{2}+7}$
7. State Raabe's test.
8. Sum the series $1+\frac{2}{6}+\frac{2.5}{6.12}+\frac{2.5 .7}{6.12 .8}+\cdots$
9. Show that the points $(5,3,-2),(3,2,1)$ and $(-1,0,7)$ are collinear.
10. Find the direction cosines of the line joining the points $(1,2,4)$ and $(-1,3,2)$.

PART-B

Answer any FIVE questions
11. Find the length of one loop of the curve $3 a y^{2}=x(x-a)^{2}$.
12. Show that $\int_{0}^{\frac{\pi}{4}} \log (1+\tan \theta) d \theta=\frac{\pi}{8} \log 2$.
13. Solve $\frac{d y}{d x}=\frac{x+2 y-3}{2 x+y-3}$.
14. Solve $\left(D^{2}+4\right) y=x \sin x$.
15. (i) Show that $\sum \frac{1}{4 n^{2}-1}=\frac{1}{2}$ (ii) Show that $\sum \frac{1}{n}$ is divergent. $(5+3)$
16. Find the image of the point $P(1,3,4)$ in the plane $2 x-y+z+3=0$
17. Find the equation of the plane through the points $(2,2,1)$ and $(9,3,6)$ and perpendicular to the plane $2 x+6 y+6 z=9$.
18. Prove that $\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+\cdots=1-\log 2$.

PART - C

Answer any TWO questions
19. Evaluate i) $\int x^{4}(\log x)^{3} d x$.
ii) $\int \frac{d x}{x^{4}+1}$.
$(10+10)$
20. a) Solve $\left(D^{2}-4 D+3\right) y=\sin 3 x \cos 2 x$.
b) Test the convergence of the series $\frac{x}{3}+\frac{1.2 x^{2}}{3.5}+\frac{1.2 .3 x^{3}}{3.5 .7}+\cdots$

21 a) Sum the series to infinity $1+\frac{1+2}{2!}+\frac{1+2+2^{2}}{3!}+\cdots$
b) When x is large show that $\sqrt{x^{2}+4}-\sqrt{x^{2}+1}=\frac{3}{2 x}\left(1-\frac{5}{4 x^{2}}+\frac{21}{8 x^{4}}\right)$ nearly.

22 a). Find the magnitude and equations of the line of shortest distance between the lines $\frac{x-8}{3}=\frac{y+9}{-16}=\frac{z-10}{7}$ and $\frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}$.
b). Find the equation to the sphere through the points

$$
\begin{equation*}
(0,0,0),(0,1,-1),(-1,2,0) \text { and }(1,2,3) \tag{12+8}
\end{equation*}
$$

